M. T. Homer Reid MIT Home Page
Physics Problems Research teaching My Music About Me Miscellany


Published papers

[1] A. W. Rodriguez, M. T. H. Reid, F. Intravaia, A. Woolf, D. A. R. Dalvit, F. Capasso, and S. G. Johnson. Geometry-induced Casimir suspension of oblate bodies in fluids. Phys. Rev. Lett., vol. 111, p. 180402, Oct 2013. [ bib | DOI | http ]
[2] A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson. Fluctuating-surface-current formulation of radiative heat transfer: Theory and applications. Phys. Rev. B, vol. 88, p. 054305, Aug 2013. [ bib | DOI | http ]
[3] J. Zou, Z. Marcet, A. W. Rodriguez, M. T. H. Reid, A. P. McCauley, I. I. Kravchenko, T. Lu, Y. Bao, S. G. Johnson, and H. B. Chan. Casimir forces on a silicon micromechanical chip. Nat. Commun., vol. 4, p. 1845, May 2013. [ bib | DOI | .html ]
[4] M. T. H. Reid, J. White, and S. G. Johnson. Fluctuating surface currents: An algorithm for efficient prediction of Casimir interactions among arbitrary materials in arbitrary geometries. Phys. Rev. A, vol. 88, p. 022514, Aug 2013. [ bib | DOI | http ]
[5] J. Feist, M. T. H. Reid, and M. F. Kling. Nanoplasmonic near-field synthesis. Phys. Rev. A, vol. 87, p. 033816, Mar 2013. [ bib | DOI | http ]
[6] A. W. Rodriguez, M. T. H. Reid, J. Varela, J. D. Joannopoulos, F. Capasso, and S. G. Johnson. Anomalous near-field heat transfer between a cylinder and a perforated surface. Phys. Rev. Lett., vol. 110, p. 014301, Jan 2013. [ bib | DOI | http ]
[7] A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson. Fluctuating-surface-current formulation of radiative heat transfer for arbitrary geometries. Phys. Rev. B, vol. 86, p. 220302, Dec 2012. [ bib | DOI | http ]
[8] A. P. McCauley, M. T. H. Reid, M. Krüger, and S. G. Johnson. Modeling near-field radiative heat transfer from sharp objects using a general three-dimensional numerical scattering technique. Phys. Rev. B, vol. 85, p. 165104, Apr 2012. [ bib | DOI | http ]
[9] V. A. Golyk, M. Krüger, M. T. H. Reid, and M. Kardar. Casimir forces between cylinders at different temperatures. Phys. Rev. D, vol. 85, p. 065011, Mar 2012. [ bib | DOI | http ]
[10] M. T. H. Reid, J. White, and S. G. Johnson. Computation of Casimir interactions between arbitrary three-dimensional objects with arbitrary material properties. Phys. Rev. A, vol. 84, p. 010503, Jul 2011. [ bib | DOI | http ]
[11] K. Pan, A. P. McCauley, A. W. Rodriguez, M. T. H. Reid, J. K. White, and S. G. Johnson. Calculation of nonzero-temperature Casimir forces in the time domain. Phys. Rev. A, vol. 83, p. 040503, Apr 2011. [ bib | DOI | http ]
[12] A. P. McCauley, R. Zhao, M. T. H. Reid, A. W. Rodriguez, J. Zhou, F. S. S. Rosa, J. D. Joannopoulos, D. A. R. Dalvit, C. M. Soukoulis, and S. G. Johnson. Microstructure effects for Casimir forces in chiral metamaterials. Phys. Rev. B, vol. 82, p. 165108, Oct 2010. [ bib | DOI | http ]
[13] M. Levin, A. P. McCauley, A. W. Rodriguez, M. T. H. Reid, and S. G. Johnson. Casimir repulsion between metallic objects in vacuum. Phys. Rev. Lett., vol. 105, p. 090403, Aug 2010. [ bib | DOI | http ]
[14] M. T. H. Reid, A. W. Rodriguez, J. White, and S. G. Johnson. Efficient computation of Casimir interactions between arbitrary 3d objects. Phys. Rev. Lett., vol. 103, p. 040401, Jul 2009. [ bib | DOI | http ]
[15] M. Reid, A. Rodriguez, and S. Johnson. Fluctuation-induced phenomena in nanoscale systems: Harnessing the power of noise. Proceedings of the IEEE, vol. 101, no. 2, pp. 531-545, 2013. [ bib | DOI ]
[16] O. D. Miller, C. W. Hsu, M. T. H. Reid, W. Qiu, B. G. DeLacy, J. D. Joannopoulos, M. Soljačić, and S. G. Johnson. Fundamental limits to extinction by metallic nanoparticles. Physical Review Letters, vol. 112, p. 123903, March 2014. [ bib | DOI | arXiv | .pdf ]
We show that there are shape-independent upper bounds to the extinction cross section per unit volume of dilute, randomly arranged nanoparticles, given only material permittivity. Underlying the limits are restrictive sum rules that constrain the distribution of quasistatic eigenvalues. Surprisingly, optimally designed spheroids, with only a single quasistatic degree of freedom, reach the upper bounds for four permittivity values. Away from these permittivities, we demonstrate computationally optimized structures that surpass spheroids and approach the fundamental limits.

[17] A. Kumar, K. H. Fung, M. T. H. Reid, and N. X. Fang. Transformation optics scheme for two-dimensional materials. Opt. Lett., vol. 39, pp. 2113-2116, Apr 2014. [ bib | DOI | http ]
Two-dimensional optical materials, such as graphene, can be characterized by surface conductivity. So far, the transformation optics schemes have focused on three-dimensional properties such as permittivity ϵ and permeability μ. In this Letter, we use a scheme for transforming surface currents to highlight that the surface conductivity transforms in a way different from ϵ and μ. We use this surface conductivity transformation to demonstrate an example problem of reducing the scattering of the plasmon mode from sharp protrusions in graphene.

[18] M. Reid, J. White, and S. Johnson. Generalized Taylor-Duffy method for efficient evaluation of Galerkin integrals in boundary-element method computations. Antennas and Propagation, IEEE Transactions on, vol. PP, no. 99, pp. 1-1, 2014. [ bib | DOI ]
[19] A. Kumar, K. H. Fung, M. T. H. Reid, and N. X. Fang. Photon emission rate engineering using graphene nanodisc cavities. Opt. Express, vol. 22, pp. 6400-6415, Mar 2014. [ bib | DOI | http ]
In this work, we present a systematic study of the plasmon modes in a system of vertically stacked pair of graphene discs. Quasistatic approximation is used to model the eigenmodes of the system. Eigen-response theory is employed to explain the spatial dependence of the coupling between the plasmon modes and a quantum emitter. These results show a good match between the semi-analytical calculation and full-wave simulations. Secondly, we have shown that it is possible to engineer the decay rates of a quantum emitter placed inside and near this cavity, using Fermi level tuning, via gate voltages and variation of emitter location and polarization. We highlighted that by coupling to the bright plasmon mode, the radiative efficiency of the emitter can be enhanced compared to the single graphene disc case, whereas the dark plasmon mode suppresses the radiative efficiency.

This file was generated by bibtex2html 1.97.


[1] M. T. Homer Reid and S. G. Johnson. Efficient Computation of Power, Force, and Torque in BEM Scattering Calculations. ArXiv e-prints, July 2013. [ bib | arXiv ]
[2] A. P. McCauley, A. W. Rodriguez, M. T. Homer Reid, and S. G. Johnson. Casimir repulsion beyond the dipole regime. ArXiv e-prints, May 2011. [ bib | arXiv ]
[3] M. F. Maghrebi and H. Reid. Entanglement entropy of dispersive media from thermodynamic entropy in one higher dimension. ArXiv e-prints, Dec. 2014. [ bib | arXiv ]

This file was generated by bibtex2html 1.97.

PhD Thesis

Fluctuating Surface Currents:
A New Algorithm for Efficient Prediction of Casimir Interactions among Arbitrary Materials in Arbitrary Geometries

Abstract: For most of its 60 year history, the Casimir effect was an obscure theoretical backwater, but technological advances over the past decade have promoted this curious manifestation of quantum and thermal fluctuations to a position of central importance in modern experimental physics. Dramatic progress in the measurement of Casimir forces since 1997 has created a demand for theoretical tools that can predict Casimir interactions in realistic experimental geometries and in materials with realistic frequency-dependent electrical properties.

This work presents a new paradigm for efficient numerical computation of Casimir interactions. Our new technique, which we term the fluctuating-surface-current (FSC) approach to computational Casimir physics, borrows ideas from the boundary-element method of computational electromagnetism to express Casimir energies, forces, and torques between bodies of arbitrary shapes and materials in terms of interactions among effective electric and magnetic surface currents flowing on the surfaces of the objects. We demonstrate that the master equations of the FSC approach arise as logical consequences of either of two seemingly disparate Casimir paradigms---the stress-tensor approach and the path-integral (or scattering) approach---and this work thus achieves an unexpected unification of these two otherwise quite distinct theoretical frameworks.

But a theoretical technique is only as relevant as its practical implementations are useful, and for this reason we present three distinct numerical implementations of the FSC formulae, each of which poses a series of unique technical challenges. Finally, using our new theoretical paradigm and our practical implementations of it, we obtain new predictions of Casimir interactions in a number of experimentally relevant geometric and material configurations that would be difficult or impossible to treat with any other existing Casimir method.

Homer Reid's Publications Page, by Homer Reid
Last Modified: 11/16/16